Section 4.1 Absolute Extrema

\#1-9: Find the absolute maximum and absolute minimum
1)

$(4,7)$ is the highest point. Its y coordinate is the absolute maximum. $(2,3)$ is the lowest point. It's y-coordinate is the absolute minimum. $(1,4)$ is neither the highest nor the lowest point. It is not an absolute maximum, nor an absolute minimum.

It would be best to write your answer as follows:

Solution:

There is an absolute maximum of $\mathrm{y}=7$, which occurs when $\mathrm{x}=4$.
There is an absolute minimum of $\mathrm{y}=3$, which occurs when $\mathrm{x}=2$.
3)

$(3,1)$ is the highest point. Its y coordinate is the absolute maximum.
$(0,-8)$ is the lowest point. It's y-coordinate is the absolute minimum.
$(5,-3)$ is neither the highest nor the lowest point. It is not an absolute maximum, nor an absolute minimum.

It would be best to write your answer as follows:

Solution:

There is an absolute maximum of $y=1$, which occurs when $x=3$. There is an absolute minimum of $y=-8$, which occurs when $x=0$.
5)

$(0,6)$ is the highest point. Its y coordinate is the absolute maximum.
$(-2,-10)$ and $(2,-10)$ are tied for the lowest point. Their y-coordinate is the absolute minimum.
$(-2.5,-4.94)$ and $(2.5,-4.94)$ are neither the highest nor the lowest point. They are not an absolute maximum, nor an absolute minimum. It would be best to write your answer as follows:

Solution:

There is an absolute maximum of $y=6$, which occurs when $x=0$.
There is an absolute minimum of $y=-10$, which occurs when $x=-2$ and $x=2$.
7)

$(5,12)$ is the highest point. Its y coordinate is the absolute maximum.
$(0,-8)$ and $(3,-8)$ are tied for the lowest point. Their y-coordinate is the absolute minimum.
$(1,-4)$ is not a point to consider as it is neither the highest nor lowest point.

It would be best to write your answer as follows:

Solution:

There is an absolute maximum of $\mathrm{y}=1$, which occurs when $\mathrm{x}=5$.
There is an absolute minimum of $y=-8$, which occurs when $x=0$ and x
$=3$.
9)

$(-1,3)$ is the highest point. It's y coordinate is the absolute maximum.
$(2,-6)$ is the lowest point. It's y-coordinate is the absolute minimum.
$(0,2)$ is neither the highest nor the lowest point. It is not an absolute maximum, nor an absolute minimum.

It would be best to write your answer as follows:

Solution:

There is an absolute maximum of $\mathrm{y}=3$, which occurs when $\mathrm{x}=-1$.
There is an absolute minimum of $\mathrm{y}=-\mathbf{6}$, which occurs when $\mathrm{x}=2$.
\#10-27: Find the absolute maximum and absolute minimum of the function under the given interval.
11) $f(x)=x^{2}-6 x+4 ; \quad[-5,5]$

First find all values of x between -5 and 5 where $f^{\prime}(x)=0$
$f^{\prime}(x)=2 x-6$
$2 x-6=0$
$2 x=6$
$x=3$ (is the value of x between -5 and 5 where $f^{\prime}(x)$
$=0$)
Next make a table of values, place -5,5 and 3 in the x-column. Then find the corresponding y-value by plugging the x-values into the original function.

X-value	Y-value	Point on graph
-5	$f(-5)=(-5)^{2}-6(-5)+4=59$	$(-5,59)$ abs max
5	$f(5)=(5)^{2}-6(5)+4=-1$	$(5,-1)$
3	$f(3)=(3)^{2}-6(3)+4=-5$	$(3,-5)$ abs min

Answer:

absolute max $y=59$, when $x=-5$
absolute $\min y=-5$, when $x=3$
13) $f(x)=x^{3}+6 x^{2} ;[-2,1]$

First find all values of x between -2 and 1 where
$f^{\prime}(x)=0$
$f^{\prime}(x)=3 x^{2}+12 x$
$3 x^{2}+12 x=0$
$3 x(x+4)=0$
$3 x=0, \quad x+4=0$
$\mathrm{x}=0 / 3, \quad \mathrm{x}=-4($ (ignore this as it is not between -2 and 1)
$x=0$
Next make a table of values, place $-2,1$ and 0 in the x-column. Then find the corresponding y-value by plugging the x-values into the original function

X-value	Y-value	Point on graph
-2	$f(-2)=(-2)^{3}+6(-2)^{2}=16$	$(-2,16)$ abs max
1	$f(1)=(1)^{3}+6(1)^{2}=7$	$(5,-1)$
0	$f(-2)=(0)^{3}+6(0)^{2}=0$	$(0,0)$ abs min

Answer:

absolute max $y=16$, when $x=-2$
absolute $\min \mathrm{y}=0$, when $\mathrm{x}=0$
15) $f(x)=x^{3}-3 x^{2}+2 ;[-1,5]$

First find all values of x between -1 and 5 where $f^{\prime}(x)=0$
$f^{\prime}(x)=3 x^{2}-6 x$
$3 x^{2}-6 x=0$
$3 x(x-2)=0$
$3 x=0$
$x-2=0$
$x=0$
$x=2$
Next make a table of values, place $-1,5,2$ and 0 in the x-column. Then find the corresponding y-value by plugging the x-values into the original function

X - value	Y-value	Point on graph
-1	$f(-1)=(-1)^{3}-3(-1)^{2}+2=-2$	$(-1,-2)$ abs min
5	$f(5)=(5)^{3}-3(5)^{2}+2=52$	$(5,52)$ abs max
2	$f(2)=(2)^{3}-3(2)^{2}+2=-2$	$(2,-2)$ abs min
0	$f(0)=(0)^{3}-3(0)^{2}+2=2$	

Answer:

absolute max $y=52$, when $x=5$
absolute $\min y=-2$, when $x=-1$ and $x=2$
17) $f(x)=3 x^{4}-4 x^{3} ;[-2,3]$

First find all values of x between -2 and 3 where $f^{\prime}(x)=0$
$f^{\prime}(x)=12 x^{3}-12 x^{2}$
$12 x^{3}-12 x^{2}=0$
$12 x^{2}(x-1)=0$

$$
\begin{array}{ll}
12 x^{2}=0 & x-1=0 \\
x^{2}=0 & x=1 \\
x=0 &
\end{array}
$$

Next make a table of values, place $-2,3,1$ and 0 in the x-column. Then find the corresponding y-value by plugging the x-values into the original function

X-value	Y-value	Point on graph
-2	$f(-2)=3(-2)^{4}-4(-2)^{3}=80$	
3	$f(3)=3(3)^{4}-4(3)^{3}=135$	$(3,135)$ abs max
1	$f(1)=3(1)^{4}-4(1)^{3}=-1$	$(1,-1)$ abs min
0	$f(0)=3(0)^{4}-4(0)^{3}=0$	

Answer:
absolute $\max \mathrm{y}=135$, when $\mathrm{x}=3$
absolute $\min \mathrm{y}=-1$, when $\mathrm{x}=1$
19) $f(x)=\left(x^{2}-16\right)^{3} ;[-2,2]$

First find all values of x between -2 and 2 where $f^{\prime}(x)=0$
$f^{\prime}(x)=3(2 x)\left(x^{2}-16\right)^{2}$
$f^{\prime}(x)=6 x\left(x^{2}-16\right)^{2}$
$6 x\left(x^{2}-16\right)^{2}=0$
$6 x=0$
$\left(x^{2}-16\right)^{2}=0$
$x=0$
enough to just solve $x^{2}-16=0$
$(x+4)(x-4)=0$
$x=-4, x=4$ (ignore both)
Next make a table of values, place $-2,2$ and 0 in the x-column. Then find the corresponding y-value by plugging the x-values into the original function

X - value	Y-value	Point on graph
-2	$f(-2)=\left((-2)^{2}-16\right)^{3}=-1728$	Abs $\max (-2,-1728)$
2	$f(2)=\left((2)^{2}-16\right)^{3}=-1728$	Abs $\max (2,-1728)$
0	$f(0)=\left((0)^{2}-16\right)^{3}=-4096$	Abs $\min (0,-4096)$

Answer:
absolute $\max \mathrm{y}=-1728$, when $\mathrm{x}= \pm 2$ absolute $\min \mathrm{y}=-4096$, when $\mathrm{x}=0$
21) $f(x)=\sqrt[5]{x} ; \quad[-3,2]$

First find all values of x between -3 and 2 where $f^{\prime}(x)=0$, or where $f^{\prime}(x)$ is undefined.

Rewrite with a fraction exponent to make it easier to find $f^{\prime}(x)$
$\mathrm{f}(\mathrm{x})=x^{1 / 5}$
$f^{\prime}(x)=\frac{1}{5} x^{1 / 5^{-5} / 5}=\frac{1}{5} x^{-4 / 5}=\frac{1}{5 x^{4 / 5}}$
$f^{\prime}(x)=\frac{1}{5 \sqrt[5]{x^{4}}}$
$f^{\prime}(x)=0$ when the numerator equals 0 . That is
$f^{\prime}(x)=0$ when $1=0$. Since there is no x, there is no
value of x where $f^{\prime}(x)=0$

21 continued

$f^{\prime}(x)$ is undefined when its denominator equals 0 . To do this set the denominator of the derivative equal to 0 .
$5 \sqrt[5]{x^{4}}=0$
First divide both sides by 5
$\sqrt[5]{x^{4}}=0$
Then raise both sides to the $5^{\text {th }}$ power to cancel the radical.
$\left(\sqrt[5]{x^{4}}\right)^{5}=0^{5}$
This gives
$x^{4}=0$
Now take the $4^{\text {th }}$ root of both sides. I would need a plus or minus sign if the 0 were some positive or negative number.
$\sqrt[4]{x^{4}}=\sqrt[4]{0}$
$x=0$ (this is a number that needs to go in my table)

21) concluded

Next make a table of values, place $-3,2$ and 0 in the x-column. Then find the corresponding y-value by plugging the x-values into the original function

X - value	Y-value	Point on graph
-3	$\mathrm{f}(-3)=\sqrt[5]{-3}=-1.25$	Abs $\min (-3, \sqrt[5]{-3})$
2	$\mathrm{f}(2)=\sqrt[5]{2}=1.15$	Abs $\max (2, \sqrt[5]{2})$
0	$\mathrm{f}(0)=0$	

Answer:

absolute $\min y=\sqrt[5]{-3}$, when $x=-3$
absolute $\max \mathrm{y}=\sqrt[5]{2}$, when $\mathrm{x}=2$
23) $f(x)=2 x e^{x}$; $[0,3]$
$f^{\prime}(x)=2 \mathrm{e}^{\mathrm{x}}+2 \mathrm{e}^{\mathrm{x}}$
$f^{\prime}(x)=2 e^{x}(x+1)$
$2 \mathrm{e}^{\mathrm{x}}=0$
$x+1=0$
No solution
$x=-1$ ignore this as it is not in the Interval [0,3]

Only test the endpoints as the critical number is not in the interval.

x	$f(x)$	point
0	$f(0)=2(0) e^{0}=0$	$(0,0)$ abs min
3	$f(3)=2(3) e^{3}=6 e^{3}=120.51$	$\left(3,6 e^{3}\right)$ abs max

Abs max of $y=6 e^{3}$ when $x=3$
Abs \min of $y=0$ when $x=0$
25) $f(x)=e^{x^{2}} ;[-2,1]$
$\mathrm{f}^{\prime}(\mathrm{x})=2 x e^{x^{2}}$
$2 x e^{x^{2}}=0$
$2 \mathrm{x}=0 \quad e^{x^{2}}=0$
$x=0$ no solution

x	$\mathrm{f}(\mathrm{x})$	point
0	$\mathrm{f}(0)=e^{0^{2}}=1$	$(0,1)$ abs min
-2	$\mathrm{f}(-2)=e^{(-2)^{2}}=e^{4}=54.60$	$\left(-2, \mathrm{e}^{4}\right)$ abs max
1	$\mathrm{f}(1)=e^{1}=e=2.72$	

Abs max $y=e^{4}$ when $x=-2$
Abs $\min \mathrm{y}=1$ when $\mathrm{x}=0$
27) $f(x)=x^{2} e^{x} ;[-3,1]$
$f^{\prime}(x)=2 x e^{x}+x^{2} e^{x}$
$f^{\prime}(x)=x e^{x}(2+x)$
$x e^{x}(2+x)=0$
$\mathrm{x}=0$
$\mathrm{e}^{\mathrm{x}}=0$
$2+x=0$
$x=0$
no sol
$x=-2$

x	$f(x)$	point
-3	$f(-3)=(-3)^{2} e^{-3}=9 / e^{3}=.45$	$\left(-3,9 / e^{3}\right)$
1	$f(1)=(1)^{2} e^{1}=e=2.72$	$(1, e)$ abs \max
0	$f(0)=(0)^{2} e^{0}=0$	$(0,0)$ abs \min
-2	$f(-2)=(-2)^{2} e^{-2}=4 / e^{2}=.54$	$\left(-2,4 / e^{2}\right)$

Abs $\max \mathrm{y}=\mathrm{e}$ when $\mathrm{x}=1$
Abs min $\mathrm{y}=0$ when $\mathrm{x}=0$

